EGC442
Class Notes
4/14/2023

Baback 1zadi
Division of Engineering Programs
bai@engr.newpaltz.edu




Test 2:

® Chapter 4
e ALU design

® Chapter 5
® Design of data path and

ontrol

° Pipelined processor

¢ Correcting for various

hazards

* Advanced pipeline

concepts



/

Exception

 hpeofevent | Pomwhere? | MIPS terminology |

Exception: Also called interrupt. An unscheduled event that disrupts program execution;
used to detect overflow.

= |nterrupt: An exception that comes from outside of the processor. (Some architectures use
the term interrupt for all exceptions.)

» \/ectored interrupt: An interrupt for which the address to which control is transferred is
determined by the cause of the exception

| 1/0 device request R ~ External | Interrupt
_Invoke the operating system from user program ___ Internal Exception
Arithmetic overflow Internal Exception
_l._.l_.;.in; an unduﬂnad_i_nstructlnn Intarnal Exception
Hardware malfunctions Either Exception or interrupt

_l._.lrgr:lanned Inltn_n:tiun

Arithmetic overfiow

8000 0000,

2000 0380,




Exception Example

»FException on add In

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, %1
~—»560 slt $15, $6, $7
54 Iw  $16, 50($7)

»Handler

80000180 sw  $25, 1000($0)
80000184 sw  $26, 1004($0)

/



Exception Example

Iw $16, 50($7) slt $15, $6, $7 add $1, $2, $1 or$13, ...

1
L}
1
1
[}
T

IF.Flush

1
1
E EX.Flush
1
1

]

1

1

1

ID.Flush : |
/~ Hazard ! !
1

]

1

1

1

] detection | :
unit J Yy :
)

800001

Data
memory

Clock 6




Exception Example

sw $25, 1000($0) bubble (nop) ; bubble . bubble :
! | EX.Flush | |
IF.Flush ! N i ;
: ID.Flush i ; |
' [/ Hazard ' ! :
detection | ! : ]
unit J Y : M 1 1
ID/EX y E E
0 0 0L X 1 E
Control ’ﬂ % im °°°c '
_-B_ o-& |o eec| O
Y
ters| (=
13

m wa
Sign-

Clock 7

)
Forwarding\®
unit /J




According to MIPS convention, the term interrupt refers to an
unscheduled event caused by an external source.

® True
O Fralse

X Exception handling is not an essential feature of processor's control
unit.

O True
® ralse

1) When an exception occurs in MIPS, the processor first saves the
address of the offending instruction in the

EPC

2) In MIPS, the register stores the cause of an exception and
communicates that information to the operating system for
exception handling.

Cause

3) For a vectored interrupt, the cause of an exception determines the
that control is transferred to.

Show answer

address

Show answer

Correct

MIPS uses the term interrupt only for exceptions with
external causes. Other architectures, such as x86, use
interrupt to describe all exceptions.

Correct

Improper exception handling can reduce a processor's
performance, therefore the control unit must be designed

10 handle exceptions.

Feedback?

Correct
EPC

By storing the address of the offending instruction, the
EPC, short for exception program counter, allows the
processor to determine where to restart a program's
execution after an exception occurs.

Correct
Cause

The Cause register has a field that stores the exception
type.

Correct
address

The operating system can determine the cause of an
exception based on the offending instruction's address.



In a pipeline implementation, offending arithmetic overflow

instructions are detected in the stage of the pipeline to
prevent the results from being written to the stage.

O IFID

O EX, MEM

® EX,WB

In the majority of MIPS implementations, multiple thrown exceptions
are interrupted

O according to which instruction causes the largest exception
@® according to which offending instruction is earliest

QO randomly

An) is always associated with an exact instruction in
pipelined computers.

@® precise interrupt

O imprecise interrupt

add $1, $2, $1 # arithmetic overflow

XXX $1, $2, $1 # undefined instruction

sub $1, $2, $1 # hardware error

'@ Which exception should be recognized first in the above sequence?
® arithmetic overflow
QO undefined instruction

QO hardware error

Correct

The EX Flush signal prevents the instruction fram fully
executing and writing results to the WB, or write back,
stage.

Correct

MIPS processors interrupt the earliest instruction first.

Correct

Designing precise interrupts is difficult and so some
processors have imprecise interrupts.

Correct

The add instruction is logically executed first. The
overflow is detected in the EX stage and invokes the
operating system to handle the exception.



7. Show what happens in the pipeline if an overflow exception occurs in

the sub instruction.

A4 sub  $12,52,54
or $13, $2, $6 sub $12, $2, $5 and $11, $2, $4 8. or $13, $2, $6
EXFiush 4Chy add  $1,52, 51
SOhex slt  $15, 96, $7
AChex w516, 50(57)

40nex and 511,52, 54

IF Flush

/" Hazard ™\
 —e detection |
_unit__J

$1 Data l

3 12

» A — e L
ClOCk 6 - ' TF ﬂrw.mmng‘l;_' i

1
' ) wnit J-
. .




Show what happens in the pipeline if an overflow exception OWI(F m the sub instruction.

EX.Flush

/ or $9({-@6 sub $12, $24$5 and $11, $2, $4
540 Nof |

 —e detection
unit

/ Hazard ‘ A
|

3

- g
] — | T
TForwarding)

it }
H A un Pa

- = =




MIPS with Static Dual Issue

vaach & AU
iD 4 _— n'n/\sir(uch'd_VB

ALU—>

1

|

/ > > > M

4 | Registers u . /

80000180 - pcll,. | Instruction |— N | |
memory [ [ » |
. > Write L
3 data ,
} Data O g
' ALU . [EE -
memory
Address S l /Q
' )
fu Msfﬂ/chaz
» u - "
X




single issue

multiple issue

dynamic multiple issue

static multiple issue

When one instruction is launched per clock cycle.

Single issue pipelining can achieve parallelism when instruction operations are
overlapped.

The parallelism between instructions.

Pipelining exploits ILP, short for instruction-level parallelism, by launching new
instructions during the latter stages of previous instructions.

When multiple instructions are launched per clock cycle.

Multiple issue pipelining allows the instruction execution rate to exceed the clock rate.

A multiple issue implementation where decisions are made during
execution by the processor.

The implementation is dynamic, because decisions are being made during runtime.

The positions available to issue instructions in a given clock cycle.
A task of multiple issue is determining which issue slots should be used for which
Instructions.

A multiple issue implementation where decisions are made by the compiler
before execution.

The implementation is static because decisions cannot be changed during runtime.

Correct

Correct

Correct

Correct

Correct

Correct



Scheduling Example

» Schedule this for dual-issue MIPS

Loop: lIw ) sl) # $tO=array element
addu ; , $s2 # add scalar in $s2
Sw , 0($s1) # store result
addir $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s11=0
ALU/branch Load/store cycle
Loop: Iw @t@ 0($s1) 1
addi( 351, $s1,-4  |o—

2
addu/$—to, M 3
4

bne é@@l} $zero, Loop |sw  $t0O, 4($sl)

« IPC =5/4 = %(C.f. peak IPC = 2)



9. Show how the following loop can be scheduled on a static two-issue pipeline for MIPS?

Loop: Iw $t0, 0($al)
add $t0, $t0, $a3
sw  $t0, 0($al)
addi $al, $al, -12
bne $al, $0, Loop

Computer the overall IPC.

ALU/Branch Load / Store

nop lw $t0, 0($s1)
nop

add $t0, $t0, $a3 SW $t0, 0($al)
addi $al, $al, -12

bne $al, $0, Loop

s [PC=5/5=1



9. Show how the following loop can be scheduled on a static two-issue pipeline for MIPS?

Loop: Iw $t0, 0($al)
add $t0, $t0, $a3
sw  $t0, 0($al)
addi $al, $al, -12
bne $al, $0, Loop

Reorder the instructions to avoid as many pipeline stalls as possible. Computer the overall IPC.

ALU/Branch Load / Store

nop lw $t0, 0($s1)
addi $al, $al, -12

add $t0, $t0, $a3

bne $al, $0, Loop SW $t0, 12($al)

s [PC=5/4=1.25



Loop Unrolling Example

Iw

addu $t0, $t0, $s2

SW

Iw
addu
sw
addi

addu
sw
addi

addu
sw
addi

$t0, 0($sl)

$t0, 0($sl)
addi $s1, $s1,-4

$t0,
$to,
$to,

si,

$t0,
$t0,
$t0,
$s1,

$to,
$t0,
$t0,
$s1,

0($sl)
$t0, $s2
0($s1)
$s1,-4

0($s1)
$t0, $s2
0($s1)
$s1,-4

0($s1)
$t0, $s2
0($s1)
$s1,-4

Iw  $t0, 0($sl)
addu $t0, $t0, $s2
sw  $t0, 0($s1)
addi $s1, $s1,-16

Ilw $t0, 12($sl)
addu $t0, $t0, $s2
sw  $t0, 12($sl)
Iw  $t0, 8($sl)
addu $t0, $t0, $s2
sw  $t0, 8($sl)
Ilw  $t0, 4($sl)
addu $tO, $t0, $s2
sw  $t0, 4($sl)

Iw $t0,
addu $tO,
sw $t0,
addi $s1,
Iw $tl,
addu $t1,
sw $t1,
Iw $t2,
addu $t2,
Sw $t2,
Iw $t3,
addu $t3,
sw $t3,

0($sl)
$t0, $s2
0($sl)
$s1,-16

12($s1)
$tl, $s2
12($sl)

8($sl)
$t2, $s2
8($sl)

4($s1)
$t3, $s2
4($sl)




l 0 A very long instruction word (VLIW) architecture groups multiple
operations together and then launches them like a single instruction.

® True
QO False

| Z]J In all static multiple issue processors, the compiler is responsible for
removing all data hazards and avoiding all dependences.

QO True
® False

Izlf the use latency for a load instruction is one clock cycle, then an
instruction can use the result from the load on the next clock cycle.

QO True
® False

B Both loop unrelling and register renaming allow a processor to better
schedule instructions and improve performance.

® True
QO False

’é* Loop unrolling and register renaming can lead to an increase in code
and the need for more resources.

® True
QO False

Correct

The term very long word instruction come from the fact
that issue packets store multiple operations to be
launched together like a single instruction.

Correct

Multiple issue processors vary in how they handle
hazards and dependences. Some static multiple issue
processors require the compiler to remove all data
nazards. Other static multiple issue processors require
the compiler to avoid all dependences within a pair of
instructicns.

Correct

A use latency of one clock cycle prevents another
instruction from using the load's result on the next clock
cycle without stalling. If an instruction tries to use the
load's result in the next clock cycle, the new instruction
will stall.

Correct

Loop unrolling is the act of replicating the loop body
many times to issue independent instructions in parallel.
Register renaming identifies independent registers and
eliminates name dependences. The methods can be
used separately or together to improve instruction
scheduling.

Correct

Loop unrolling increases code by replicating the loop
body a number of times. Register renaming calls for the
use of temparary registers, which are additional
resources.



15) Show would the following loop unrolling and register renaming can be used for 4 iteration of the
following on a static two-issue pipeline for MIPS? Computer the overall IPC.

Loop: 1w $t0, 0($al)

d $tO0,
$t0,
ddi $al,

$to,
$t0,

0($sl)
$t0, %$a3
0(s$

$al

0($s1)

/ 0($sl) 7
, $t0, %$a3

, 0(%al)
, $al,-1

, 0(%$s1)

, $t0, %$a3
, 0(%al)

, $al,-12

add $t0, $t0, $a3
sw  $t0, 0($al)
addi $al, $al, -12
bne $al, $0, Loop

rd

Iw  $t0, 0($sl)

add $tO, $t0, $a3
sw $t0, 0($al
ddi $al, $al

Iw $t0,
add $t0, S
Ssw $t0,

v $t0, 0(3s1) _Y

add $tO0, $t0, $a3

Iw  $t0, 0($sl)
add $tO0, $t0, $a3
sw  $t0, 12($al)

$t0, 0($sl)
$t0, $tO, %a3
$t0, 0(%al)
$al, $%al,—48

$tl, 0(%$sl)
$t1, $t1, %$a3
$t1, 36($al)

$t2, 0(%$sl)
$t2, $t2, %$a3
$t2, 24(%$al)

$t3, 0($s1)
$t3, $t3, %$a3
$t3, 12($al)




Loop Unrolling ExanIe

w lw  $t0, 0($sl)

] add $t0, $t0, $a3
ALU/b;angh Load/sto/re\ cycle sw $t0, 0(%al)
addi $al, $al,—48

Lloop: addi&$sl) $s1,-48 | lw—(3t0,) 0($sl) 1
v $t1, 0($sl)
_— | Gty 12¢ssD) 2 add $t1. $t1, $a3
adc( st/ $tof $a3 P st2, 8(ssl) 3 sw  $tl, 36($al)
add‘HﬁEfJTﬁfi:igggz::_¥ Iw  $t3, 4($sl) 4
Iw  $t2, 0($sl)
add $t2, $t2, $a3 sw_[$t0, )48($s1) 5 d S
add §{3, $t3, $a3 sw \$f1/ 36($sl) 6 sw  $t2, 24($al)
y sw  $t2, 24($sl) 7
8

Iw  $t3, 0($sl)
add $t3, $t3, %a3
sw  $t3, 12(%al)

qﬁé $al, $zero, Loop [sw  $t3, 12($sl)

»|PC = 14/8

» Closer to 2, but at cost of registers and code size




